Share Email Print
cover

Proceedings Paper • new

Subwavelength grating metamaterial waveguides for silicon photonics (Conference Presentation)
Author(s): Pavel Cheben
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Subwavelength pho¬tonics has seen tremendous progress, particularly in nanostructured engineered materials: metamateri¬als, metallic and dielectric subwavelength structures and subwavelength engineered waveguides. The novel optical properties found in these structures, along with the capability, through advanced fabrication techniques, to control their optical responses with unprecedented accuracy, has opened new prospects for controlling and manipulating light in planar waveguide circuits, at subwavelength scale. Since the first demonstrations of an optical waveguide with a periodic subwavelength grating metamaterial core at National Research Council of Canada, metamaterial SWG waveguides have attracted a strong research interest in academia and industry because of their unique potential to control light propagation in planar waveguides. The subwavelength metamaterial waveguides have been adopted by industry for fiber-chip coupling and subwavelength engineered structures in general are likely to become key building blocks for the next generation of integrated photonic circuits. In this invited talk we will present an overview of recent advances in implementations of these structures in silicon photonics, including high-efficiency fiber-chip couplers, ultra-broadband surface grating couplers and multimode interference (MMI) devices, and grating filters for near- and mid-infrared operation.

Paper Details

Date Published: 14 March 2018
PDF
Proc. SPIE 10537, Silicon Photonics XIII, 1053708 (14 March 2018); doi: 10.1117/12.2284336
Show Author Affiliations
Pavel Cheben, National Research Council Canada (Canada)


Published in SPIE Proceedings Vol. 10537:
Silicon Photonics XIII
Graham T. Reed; Andrew P. Knights, Editor(s)

© SPIE. Terms of Use
Back to Top