Share Email Print

Proceedings Paper

Optical metrology in building CALTRAC Star Trackers
Author(s): Shiguang Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The CALTRAC® star tracker is a space-borne attitude sensor, that uses a wide-angle all-reflective telescope with a highly curved image surface and a small f-number. There are a number of critical optical metrology activities that are involved in building the star tracker. These include, among others, aligning the optics and CCD detector subassemblies to form an optics head by using a five-star simulator, measuring angles between internal optical axes and external references for space-craft integration, positioning the vertex of the optics to the rotation axis of a 2D rotary table for subsequent optical calibrations, determining the lateral location of an internal CCD baffle, and verifying the precision of the 2D rotary table to arc- second accuracy. Optical measurements involved in these activities must be performed accurately, so as to ensure the overall performance of the integrated star tracker system. This paper is intended to introduce the methods of optical measurement that were developed for these purposes. Accuracy achieved with these methods has proven sufficient in supporting the development and production of the star trackers.

Paper Details

Date Published: 29 August 2017
PDF: 3 pages
Proc. SPIE 10313, Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, 103130S (29 August 2017); doi: 10.1117/12.2283824
Show Author Affiliations
Shiguang Wang, EMS Technologies Canada, Ltd. (Canada)

Published in SPIE Proceedings Vol. 10313:
Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging
John C. Armitage, Editor(s)

© SPIE. Terms of Use
Back to Top