Share Email Print

Proceedings Paper

Optical properties of tissue, experimental results
Author(s): Johan F. Beek
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The effective attenuation coefficient of piglet lung was measured in vitro at 632.8 nm. Interstial fibres with isotropic tips were used to measure the fluence rate as a function of the distance from an isotropic light source. In vitro measurements at 632.8 nm on a lung that was insufflated with oxygen from 50 to 150 ml showed that the effective attenuation coefficient decreases as a function of the volume of air in the lung (at 50 ml /Jeff = 0.297 + 0.011 mnf1, at 100 ml lice 0.150 ± 0.007 mm-1, and at 150 ml /Jeff= 0.1136 + 0.015 mm-1). A single in vitro measurement at 790 nm at an insufflated lung volume of 100 ml gave a comparable result (ii ie = 0.175 + 0.004 mm-1). A ff decrease in effective attenuation coefficient with an ncrease in lung volume was explained by Mie-theory. The effective attenuation coefficient, calculated with 11, and g from Mie-theory, showed a deviation < 22% from the measured in vitro values.

Paper Details

Date Published: 5 August 1993
PDF: 18 pages
Proc. SPIE 10311, Medical Optical Tomography: Functional Imaging and Monitoring, 103110C (5 August 1993); doi: 10.1117/12.2283757
Show Author Affiliations
Johan F. Beek, Academic Medical Ctr. (Netherlands)

Published in SPIE Proceedings Vol. 10311:
Medical Optical Tomography: Functional Imaging and Monitoring
Gerhard J. Mueller, Editor(s)

© SPIE. Terms of Use
Back to Top