Share Email Print
cover

Proceedings Paper

Fault tolerance of the NIF power conditioning system
Author(s): Doug W. Larson; R. Anderson; John D. Boyes
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The tolerance of the circuit topology proposed for the National Ignition Facility (NIF) power conditioning system to specific fault conditions is investigated. A new pulsed power circuit is proposed for the NIF which is simpler and less expensive than previous ICF systems. The inherent fault modes of the new circuit are different from the conventional approach, and must be understood to ensure adequate NIF system reliability. A test-bed which simulates the NIF capacitor module design was constructed to study the circuit design. Measurements from test- bed experiments with induced faults are compared with results from a detailed circuit model. The model is validated by the measurements and used to predict the behavior of the actual NIF module during faults. The model can be used to optimize fault tolerance of the NIF module through an appropriate distribution of circuit inductance and resistance. The experimental and modeling results are presented, and fault performance is compared with the ratings of pulsed power components. Areas are identified which require additional investigation.

Paper Details

Date Published: 8 December 1995
PDF: 9 pages
Proc. SPIE 2633, Solid State Lasers for Application to Inertial Confinement Fusion (ICF), (8 December 1995); doi: 10.1117/12.228265
Show Author Affiliations
Doug W. Larson, Lawrence Livermore National Lab. (United States)
R. Anderson, American Control Engineering (United States)
John D. Boyes, Sandia National Labs. (United States)


Published in SPIE Proceedings Vol. 2633:
Solid State Lasers for Application to Inertial Confinement Fusion (ICF)
Michel Andre; Howard T. Powell, Editor(s)

© SPIE. Terms of Use
Back to Top