Share Email Print

Proceedings Paper

Measurement of vibration using phase only correlation technique
Author(s): S. Balachandar; K. Vipin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

A novel method for the measurement of vibration is proposed and demonstrated. The proposed experiment is based on laser triangulation: consists of line laser, object under test and a high speed camera remotely controlled by a software. Experiment involves launching a line-laser probe beam perpendicular to the axis of the vibrating object. The reflected probe beam is recorded by a high speed camera. The dynamic position of the line laser in camera plane is governed by the magnitude and frequency of the vibrating test-object. Using phase correlation technique the maximum distance travelled by the probe beam in CCD plane is measured in terms of pixels using MATLAB. An actual displacement of the object in mm is measured by calibration. Using displacement data with time, other vibration associated quantities such as acceleration, velocity and frequency are evaluated. The preliminary result of the proposed method is reported for acceleration from 1g to 3g, and from frequency 6Hz to 26Hz. The results are closely matching with its theoretical values. The advantage of the proposed method is that it is a non-destructive method and using phase correlation algorithm subpixel displacement in CCD plane can be measured with high accuracy.

Paper Details

Date Published: 23 August 2017
PDF: 8 pages
Proc. SPIE 10373, Applied Optical Metrology II, 1037313 (23 August 2017); doi: 10.1117/12.2282429
Show Author Affiliations
S. Balachandar, The Prism Engineering Solutions (India)
K. Vipin, SRI Krishna College of Engineering & Technology (India)

Published in SPIE Proceedings Vol. 10373:
Applied Optical Metrology II
Erik Novak; James D. Trolinger, Editor(s)

© SPIE. Terms of Use
Back to Top