Share Email Print
cover

Proceedings Paper

Coding for higher-order partial-response channels
Author(s): Razmik Karabed; Paul H. Siegel
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Partial-response maximum-likelihood (PRML) methods are now being adopted in many digital magnetic recording systems. It is expected that as linear densities continue to increase, there will be a need to use 'extended' PRML techniques. In fact, commercial systems incorporating extended partial-response target channels, denoted EPRML and EEPRML, employing the EPR4 transfer polynomial h(D) equals 1 plus D minus D2 minus D3 and the EEPR4 transfer polynomial h(D) equals 1 plus 2D minus 2D3 minus D4, respectively, have recently appeared. Among these systems, several apply the rate 2/3, (d,k) equals (1,7) runlength-limited code, originally designed for use with peak-detection, in combination with a detector trellis structure reflecting the d equals 1 constraint. In the EEPR4 case, the d equals 1 constraint is known to provide a coding gain of 2.2 dB, unnormalized for the rate loss, relative to the uncoded channel. In this paper, we describe a nested family of code constraints, properly containing the d equals 1 constraint, intended for use on the EEPR4 channel. These constraints are shown to have the same distance-enhancing properties as the d equals 1 constraint. They permit the design of practical codes for EEPR4 that offer the same coding gain as the (1,7)-coded system, but with higher achievable code rates. The paper concludes with the construction for such a code which, having rate 4/5, offers a 20% increase over the 1,7) code.

Paper Details

Date Published: 8 December 1995
PDF: 12 pages
Proc. SPIE 2605, Coding and Signal Processing for Information Storage, (8 December 1995); doi: 10.1117/12.228239
Show Author Affiliations
Razmik Karabed, IBM Almaden Research Ctr. (United States)
Paul H. Siegel, IBM Almaden Research Ctr. (United States)


Published in SPIE Proceedings Vol. 2605:
Coding and Signal Processing for Information Storage
Raghuveer M. Rao; Soheil A. Dianat; Steven W. McLaughlin; Martin Hassner, Editor(s)

© SPIE. Terms of Use
Back to Top