Share Email Print
cover

Proceedings Paper • new

Image inpainting and super-resolution using non-local recursive deep convolutional network with skip connections
Author(s): Miaofeng Liu
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

In recent years, deep convolutional neural networks come into use in image inpainting and super-resolution in many fields. Distinct to most of the former methods requiring to know beforehand the local information for corrupted pixels, we propose a 20-depth fully convolutional network to learn an end-to-end mapping a dataset of damaged/ground truth subimage pairs realizing non-local blind inpainting and super-resolution. As there often exist image with huge corruptions or inpainting on a low-resolution image that the existing approaches unable to perform well, we also share parameters in local area of layers to achieve spatial recursion and enlarge the receptive field. To avoid the difficulty of training this deep neural network, skip-connections between symmetric convolutional layers are designed. Experimental results shows that the proposed method outperforms state-of-the-art methods for diverse corrupting and low-resolution conditions, it works excellently when realizing super-resolution and image inpainting simultaneously

Paper Details

Date Published: 21 July 2017
PDF: 6 pages
Proc. SPIE 10420, Ninth International Conference on Digital Image Processing (ICDIP 2017), 104203A (21 July 2017); doi: 10.1117/12.2282200
Show Author Affiliations
Miaofeng Liu, Univ. of Science and Technology of China (China)


Published in SPIE Proceedings Vol. 10420:
Ninth International Conference on Digital Image Processing (ICDIP 2017)
Charles M. Falco; Xudong Jiang, Editor(s)

© SPIE. Terms of Use
Back to Top