Share Email Print
cover

Proceedings Paper

Data synchronisation for HEP experiments
Author(s): Adrian Byszuk
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

One of the most important tasks handled by electronic systems in High Energy Physics (HEP) experiments is data acquisition (DAQ). Architecture and requirements of DAQ systems are tightly coupled. DAQ requirements strongly influence system architecture and, at the same time, inherent constraints of chosen architecture (and hardware) may necessitate update of DAQ system requirements. One of the most important characteristics of a given DAQ system is it’s data synchronisation capability, which is constrained by performance of experiment’s timing system. This paper presents an overview of most popular timing system architectures and describes how this choice influences data synchronisation capabilities.

Paper Details

Date Published: 7 August 2017
PDF: 6 pages
Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104454N (7 August 2017); doi: 10.1117/12.2281448
Show Author Affiliations
Adrian Byszuk, Warsaw Univ. of Technology (Poland)
Univ. of Warsaw (Poland)


Published in SPIE Proceedings Vol. 10445:
Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017
Ryszard S. Romaniuk; Maciej Linczuk, Editor(s)

© SPIE. Terms of Use
Back to Top