Share Email Print
cover

Proceedings Paper

Eddy current testing for blade edge micro cracks of aircraft engine
Author(s): Wei-min Zhang; Min-dong Xu; Xuan-yi Gao; Xin Jin; Feng Qin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Based on the problems of low detection efficiency in the micro cracks detection of aircraft engine blades, a differential excitation eddy current testing system was designed and developed. The function and the working principle of the system were described, the problems which contained the manufacture method of simulated cracks, signal generating, signal processing and the signal display method were described. The detection test was carried out by taking a certain model aircraft engine blade with simulated cracks as a tested specimen. The test data was processed by digital low-pass filter in the computer and the crack signals of time domain display and Lissajous figure display were acquired. By comparing the test results, it is verified that Lissajous figure display shows better performance compared to time domain display when the crack angle is small. The test results show that the eddy current testing system designed in this paper is feasible to detect the micro cracks on the aeroengine blade and can effectively improve the detection efficiency of micro cracks in the practical detection work.

Paper Details

Date Published: 24 October 2017
PDF: 7 pages
Proc. SPIE 10458, AOPC 2017: 3D Measurement Technology for Intelligent Manufacturing, 1045806 (24 October 2017); doi: 10.1117/12.2281274
Show Author Affiliations
Wei-min Zhang, Beijing Institute of Technology (China)
Min-dong Xu, Beijing Institute of Technology (China)
Xuan-yi Gao, Beijing Institute of Technology (China)
Xin Jin, Beijing Institute of Technology (China)
Feng Qin, Beijing Aerospace Times Inertial Instrument Technology Co., Ltd. (China)


Published in SPIE Proceedings Vol. 10458:
AOPC 2017: 3D Measurement Technology for Intelligent Manufacturing
Wolfgang Osten; Anand Krishna Asundi; Huijie Zhao, Editor(s)

© SPIE. Terms of Use
Back to Top