Share Email Print
cover

Proceedings Paper • new

Acceleration of protons to high energies by an ultra-intense femtosecond laser pulse
Author(s): Jarosław Domański; Jan Badziak; Sławomir Jabłoński
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The paper reports the results of two-dimensional particle-in-cell simulations of proton beam acceleration at the interactions of a 130-fs laser pulse of intensity from the range of 1021 – 1023 W/cm2, predicted for the Extreme Light Infrastructure (ELI) lasers currently built in Europe, with a thin hydrocarbon (CH) target. A special attention is paid to the effect of the laser pulse intensity and polarization (linear - LP, circular - CP) as well as the target thickness on the proton energy spectrum, the proton beam spatial distribution and the proton pulse shape and intensity. It is shown that for the highest, ultra-relativistic intensities (~ 1023 W/cm2) the effect of laser polarization on the proton beam parameters is relatively weak and for both polarizations quasi-monoenergetic proton beams of the mean proton energy ~ 2 GeV and δE/E ≈ 0.3 for LP and δE/E ≈ 0.2 for CP are generated from the 0.1-μm CH target. At short distances from the irradiated target (< 50 um), the proton pulse is very short (< 20 fs), and the proton beam intensities reach extremely high values > 1021 W/cm2, which are much higher than those attainable in conventional accelerators. Such proton beams can open the door for new areas of research in high energy-density physics and nuclear physics as well as can also prove useful for applications in materials research e.g. as a tool for high-resolution proton radiography.

Paper Details

Date Published: 7 August 2017
PDF: 8 pages
Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 1044543 (7 August 2017); doi: 10.1117/12.2280808
Show Author Affiliations
Jarosław Domański, Institute of Plasma Physics and Laser Microfusion (Poland)
Jan Badziak, Institute of Plasma Physics and Laser Microfusion (Poland)
Sławomir Jabłoński, Institute of Plasma Physics and Laser Microfusion (Poland)


Published in SPIE Proceedings Vol. 10445:
Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017
Ryszard S. Romaniuk; Maciej Linczuk, Editor(s)

© SPIE. Terms of Use
Back to Top