Share Email Print
cover

Proceedings Paper

Head-controlled assistive telerobot with extended physiological proprioception capability
Author(s): Marcos Salganicoff; Tariq Rahman; Ricardo Mahoney; D. Pino; Vijay Jayachandran; Vijay Kumar; Shoupu Chen; William S. Harwin
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

People with disabilities such as quadriplegia can use mouth-sticks and head-sticks as extension devices to perform desired manipulations. These extensions provide extended proprioception which allows users to directly feel forces and other perceptual cues such as texture present at the tip of the mouth-stick. Such devices are effective for two principle reasons: because of their close contact with the user's tactile and proprioceptive sensing abilities; and because they tend to be lightweight and very stiff, and can thus convey tactile and kinesthetic information with high-bandwidth. Unfortunately, traditional mouth-sticks and head-sticks are limited in workspace and in the mechanical power that can be transferred because of user mobility and strength limitations. We describe an alternative implementation of the head-stick device using the idea of a virtual head-stick: a head-controlled bilateral force-reflecting telerobot. In this system the end-effector of the slave robot moves as if it were at the tip of an imaginary extension of the user's head. The design goal is for the system is to have the same intuitive operation and extended proprioception as a regular mouth-stick effector but with augmentation of workspace volume and mechanical power. The input is through a specially modified six DOF master robot (a PerForceTM hand-controller) whose joints can be back-driven to apply forces at the user's head. The manipulation tasks in the environment are performed by a six degree-of-freedom slave robot (the Zebra-ZEROTM) with a built-in force sensor. We describe the prototype hardware/software implementation of the system, control system design, safety/disability issues, and initial evaluation tasks.

Paper Details

Date Published: 1 December 1995
PDF: 12 pages
Proc. SPIE 2590, Telemanipulator and Telepresence Technologies II, (1 December 1995); doi: 10.1117/12.227935
Show Author Affiliations
Marcos Salganicoff, Univ. of Delaware and A. I. duPont Institute (United States)
Tariq Rahman, Univ. of Delaware and A. I. duPont Institute (United States)
Ricardo Mahoney, Univ. of Delaware and A. I. duPont Institute (United States)
D. Pino, Univ. of Delaware and A. I. duPont Institute (United States)
Vijay Jayachandran, Univ. of Delaware and A. I. duPont Institute (United States)
Vijay Kumar, Univ. of Pennsylvania (United States)
Shoupu Chen, Univ. of Delaware and A. I. duPont Institute (United States)
William S. Harwin, Univ. of Delaware and A. I. duPont Institute (United States)


Published in SPIE Proceedings Vol. 2590:
Telemanipulator and Telepresence Technologies II
Marcos Salganicoff, Editor(s)

© SPIE. Terms of Use
Back to Top