Share Email Print
cover

Proceedings Paper

A new comprehensive index for drought monitoring with TM data
Author(s): Yuanyuan Wang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Drought is one of the most important and frequent natural hazards to agriculture production in North China Plain. To improve agriculture water management, accurate drought monitoring information is needed. This study proposed a method for comprehensive drought monitoring by combining a meteorological index and three satellite drought indices of TM data together. SPI (Standard Precipitation Index), the meteorological drought index, is used to measure precipitation deficiency. Three satellite drought indices (Temperature Vegetation Drought Index, Land Surface Water Index, Modified Perpendicular Drought Index) are used to evaluate agricultural drought risk by exploring data from various channels (VIS, NIR, SWIR, TIR). Considering disparities in data ranges of different drought indices, normalization is implemented before combination. First, SPI is normalized to 0 — 100 given that its normal range is -4 - +4. Then, the three satellite drought indices are normalized to 0 - 100 according to the maximum and minimum values in the image, and aggregated using weighted average method (the result is denoted as ADI, Aggregated drought index). Finally, weighed geometric mean of SPI and ADI are calculated (the result is denoted as DIcombined). A case study in North China plain using three TM images acquired during April-May 2007 show that the method proposed in this study is effective. In spatial domain, DIcombined demonstrates dramatically more details than SPI; in temporal domain, DIcombined shows more reasonable drought development trajectory than satellite indices that are derived from independent TM images.

Paper Details

Date Published: 2 November 2017
PDF: 11 pages
Proc. SPIE 10421, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX, 104210N (2 November 2017); doi: 10.1117/12.2278166
Show Author Affiliations
Yuanyuan Wang, National Satellite Meteorological Ctr. (China)


Published in SPIE Proceedings Vol. 10421:
Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX
Christopher M. U. Neale; Antonino Maltese, Editor(s)

© SPIE. Terms of Use
Back to Top