Share Email Print
cover

Proceedings Paper

Evaluation of automatic cloud removal method for high elevation areas in Landsat 8 OLI images to improve environmental indexes computation
Author(s): César I. Alvarez; Ana Teodoro; Alfonso Tierra
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Thin clouds in the optical remote sensing data are frequent and in most of the cases don’t allow to have a pure surface data in order to calculate some indexes as Normalized Difference Vegetation Index (NDVI). This paper aims to evaluate the Automatic Cloud Removal Method (ACRM) algorithm over a high elevation city like Quito (Ecuador), with an altitude of 2800 meters above sea level, where the clouds are presented all the year. The ACRM is an algorithm that considers a linear regression between each Landsat 8 OLI band and the Cirrus band using the slope obtained with the linear regression established. This algorithm was employed without any reference image or mask to try to remove the clouds. The results of the application of the ACRM algorithm over Quito didn’t show a good performance. Therefore, was considered improving this algorithm using a different slope value data (ACMR Improved). After, the NDVI computation was compared with a reference NDVI MODIS data (MOD13Q1). The ACMR Improved algorithm had a successful result when compared with the original ACRM algorithm. In the future, this Improved ACRM algorithm needs to be tested in different regions of the world with different conditions to evaluate if the algorithm works successfully for all conditions.

Paper Details

Date Published: 5 October 2017
PDF: 12 pages
Proc. SPIE 10428, Earth Resources and Environmental Remote Sensing/GIS Applications VIII, 1042809 (5 October 2017); doi: 10.1117/12.2277844
Show Author Affiliations
César I. Alvarez, Univ. do Porto (Portugal)
Univ. Politécnica Salesiana (Ecuador)
Ana Teodoro, Univ. do Porto (Portugal)
Alfonso Tierra, Univ. de las Fuerzas Armadas-ESPE (Ecuador)


Published in SPIE Proceedings Vol. 10428:
Earth Resources and Environmental Remote Sensing/GIS Applications VIII
Ulrich Michel; Karsten Schulz, Editor(s)

© SPIE. Terms of Use
Back to Top