Share Email Print
cover

Proceedings Paper • new

Experimental validation of tunable features in laser-induced plasma resonators
Author(s): Roberto A. Colón Quiñones; Mark A. Cappelli
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Measurements are presented which examine the use of gaseous plasma elements as highly-tunable resonators. The resonator considered here is a laser-induced plasma kernel generated by focusing the fundamental output from a Q-switched Nd:YAG laser through a lens and into a gas at constant pressure. The near-ellipsoidal plasma element interacts with incoming microwave radiation through excitation of low-order, electric-dipole resonances similar to those seen in metallic spheres. The tunability of these elements stems from the dispersive nature of plasmas arising from their variable electron density, electron momentum transfer collision frequency, and the concomitant e↵ect of these properties on the excited surface plasmon resonance. Experiments were carried out in the Ku band of the microwave spectrum to characterize the scattering properties of these resonators for di↵erent values of electron density. The experimental results are compared with results from theoretical approximations and finite element method electromagnetic simulations. The described tunable resonators have the potential to be used as the building blocks in a new class of all-plasma metamaterials with fully three-dimensional structural flexibility.

Paper Details

Date Published: 24 August 2017
PDF: 6 pages
Proc. SPIE 10343, Metamaterials, Metadevices, and Metasystems 2017, 103430B (24 August 2017); doi: 10.1117/12.2276971
Show Author Affiliations
Roberto A. Colón Quiñones, Stanford Univ. (United States)
Mark A. Cappelli, Stanford Univ. (United States)


Published in SPIE Proceedings Vol. 10343:
Metamaterials, Metadevices, and Metasystems 2017
Nader Engheta; Mikhail A. Noginov; Nikolay I. Zheludev, Editor(s)

© SPIE. Terms of Use
Back to Top