Share Email Print
cover

Proceedings Paper

Organic-inorganic hybrid resist materials in advanced lithography
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Advanced nano-imprint lithography appears as a simple, cost reduction in manufacturing, fast operation, develop-less patterning application compatible with conventional pattern transfer techniques such as ultraviolet and electron beam lithography. However, defects generated in nano-imprint lithography present challenges that must be resolved in order to mass-produce advanced devices. The nano-imprint lithography requires the clean separation of a quartz template from a resist material, and the force required to create this separation must be minimized to prevent the resist pattern collapse and defects. This procedure is proven to be suitable for material design and the process conditions of organic-inorganic hybrid resist materials on photo-reactive underlayer material for the defect reduction by mold contamination when the mold was removed from the organic-inorganic hybrid resist materials after ultraviolet irradiation. The developed organic-inorganic hybrid resist material with ultraviolet crosslinking groups produced high resolutions nano-patterning of 50 nm line and excellent etch properties for semiconductor memory, MEMS, NEMS, biosensors, and medical devices.

Paper Details

Date Published: 31 August 2017
PDF: 6 pages
Proc. SPIE 10354, Nanoengineering: Fabrication, Properties, Optics, and Devices XIV, 103541Q (31 August 2017); doi: 10.1117/12.2275105
Show Author Affiliations
Satoshi Takei, Toyama Prefectural Univ. (Japan)
Osaka Univ. (Japan)
Naoto Sugino, Toyama Prefectural Univ. (Japan)
Makoto Hanabata, Toyama Prefectural Univ. (Japan)


Published in SPIE Proceedings Vol. 10354:
Nanoengineering: Fabrication, Properties, Optics, and Devices XIV
Eva M. Campo; Elizabeth A. Dobisz; Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top