Share Email Print
cover

Proceedings Paper

Chromatic photo-thermal actuators based on 2H-MoS2 based nanocomposites
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The ability to convert photons of different wavelength directly into mechanical motion is of significant interest in many energy conversion and reconfigurable technologies. Using few layer 2H-MoS2 nanosheets, layer by layer process of nanocomposite fabrication, and strain engineering, we demonstrate a reversible and chromatic mechanical response in MoS2-nanocomposites between 405 nm to 808 nm with large stress release. The chromatic mechanical response originates from the d orbitals and is related to the strength of the direct exciton resonance A and B of the few layer 2HMoS2 affecting optical absorption and subsequent mechanical response of the nanocomposite. The unique photomechanical response in 2H-MoS2 based nanocomposites is a result of the rich d electron physics not available to nanocomposites based on sp2 bonded graphene and carbon nanotubes, as well as nanocomposite based on metallic nanoparticles. The reversible strain dependent optical absorption suggest applications in broad range of energy conversion technologies.

Paper Details

Date Published: 31 August 2017
PDF: 10 pages
Proc. SPIE 10354, Nanoengineering: Fabrication, Properties, Optics, and Devices XIV, 103540U (31 August 2017); doi: 10.1117/12.2275041
Show Author Affiliations
V. Rahneshin, Worcester Polytechnic Institute (United States)
B. Panchapakesan, Worcester Polytechnic Institute (United States)


Published in SPIE Proceedings Vol. 10354:
Nanoengineering: Fabrication, Properties, Optics, and Devices XIV
Eva M. Campo; Elizabeth A. Dobisz; Louay A. Eldada, Editor(s)

© SPIE. Terms of Use
Back to Top