Share Email Print
cover

Proceedings Paper

Optical simulations of advanced light management for liquid-phase crystallized silicon thin-film solar cells
Author(s): Klaus Jäger; Grit Köppel; David Eisenhauer; Duote Chen; Martin Hammerschmidt; Sven Burger; Christiane Becker
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Light management is a key issue for highly efficient liquid-phase crystallized silicon (LPC-Si) thin-film solar cells and can be achieved with periodic nanotextures. They are fabricated with nanoimprint lithography and situated between the glass superstrate and the silicon absorber. To combine excellent optical performance and LPC-Si material quality leading to open circuit voltages exceeding 640 mV, the nanotextures must be smooth. Optical simulations of these solar cells can be performed with the finite element method (FEM). Accurately simulating the optics of such layer stacks requires not only to consider the nanotextured glass-silicon interface, but also to adequately account for the air-glass interface on top of this stack. When using rigorous Maxwell solvers like the finite element method (FEM), the air-glass interface has to be taken into account a posteriori, because the solar cells are prepared on thick glass superstrates, in which light is to be treated incoherently. In this contribution we discuss two different incoherent a posteriori corrections, which we test for nanotextures between glass and silicon. A comparison with experimental data reveals that a first-order correction can predict the measured reflectivity of the samples much better than an often-applied zeroth-order correction.

Paper Details

Date Published: 30 August 2017
PDF: 7 pages
Proc. SPIE 10356, Nanostructured Thin Films X, 103560F (30 August 2017); doi: 10.1117/12.2273994
Show Author Affiliations
Klaus Jäger, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany)
Zuse Institute Berlin (Germany)
Grit Köppel, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany)
David Eisenhauer, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany)
Duote Chen, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany)
Zuse Institute Berlin (Germany)
Martin Hammerschmidt, Zuse Institute Berlin (Germany)
JCMwave GmbH (Germany)
Sven Burger, Zuse Institute Berlin (Germany)
JCMwave GmbH (Germany)
Christiane Becker, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (Germany)


Published in SPIE Proceedings Vol. 10356:
Nanostructured Thin Films X
Yi-Jun Jen; Akhlesh Lakhtakia; Tom G. Mackay, Editor(s)

© SPIE. Terms of Use
Back to Top