Share Email Print
cover

Proceedings Paper

Photonic nanopatterns in organo-metal halide perovskites by thermal nanoimprint lithography (Conference Presentation)
Author(s): Neda Pourdavoud; Andre Mayer; Si Wang; Ting Hu; Jie Zhao; Kai Brinkmann; Ralf Heiderhoff; André Marianovich; Wolfgang Kowalsky; Hella-Christin Scheer; Thomas J. Riedl
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The recently re-discovered class of organometal-halide perovskites hold great promise for solar cells, LEDs and lasers.[1] Today, their potential has not been fully unlocked partially because of the lack of suitable nano-patterning techniques, which are mandatory to create resonator structures, waveguides etc. with a maximum level of precision directly into perovskite layers. Their chemical and thermal instability prevents the use of established wet-chemical patterning techniques.[2] In contrast to conventional inorganic semiconductors, crystal binding in these perovskites includes significant contributions of van der Waals interactions among the halide atoms and Hydrogen bonding.[3] The formation enthalpy per unit cell is only about 0.1eV in MAPbI3.[4] Here, we take advantage of the “soft-matter properties” of organo-metal halide perovskites and demonstrate that photonic nano-structures can be prepared by direct thermal nano-imprint lithography in MAPbI3 and MAPbBr3 at relatively low temperatures (<150°C). The resulting periodic patterns provide distributed feedback resonators, which afford lasing in MAPbI3 with ultra-low threshold levels on the order of 1 μJ/cm2.[5] Moreover, our results also state the first DFB lasers based on MAPbBr3. We will discuss the applicability of thermal imprinting for perovskite solar cells and LEDs. [1] B. R. Sutherland et al. Nat Photon 2016, 10, 295. [2] D. Lyashenko et al. physica status solidi (a) 2017, 214, 10.1002/pssa.201600302. [3] D. A. Egger et al. Journal of Physical Chemistry Letters 2014, 5, 2728. [4] A. Buin et al. Nano Lett 2014, 14, 6281. [5] N. Pourdavoud et al. Adv Mater 2017, 10.1002/adma.201605003.

Paper Details

Date Published: 21 September 2017
PDF
Proc. SPIE 10348, Physical Chemistry of Semiconductor Materials and Interfaces XVI, 103480W (21 September 2017); doi: 10.1117/12.2273186
Show Author Affiliations
Neda Pourdavoud, Bergische Univ. Wuppertal (Germany)
Andre Mayer, Bergische Univ. Wuppertal (Germany)
Si Wang, Bergische Univ. Wuppertal (Germany)
Ting Hu, Bergische Univ. Wuppertal (Germany)
Nanchang Univ. (China)
Jie Zhao, Bergische Univ. Wuppertal (Germany)
Nanchang Univ. (China)
Kai Brinkmann, Bergische Univ. Wuppertal (Germany)
Ralf Heiderhoff, Bergische Univ. Wuppertal (Germany)
André Marianovich, Technische Univ. Braunschweig (Germany)
Wolfgang Kowalsky, Technische Univ. Braunschweig (Germany)
Hella-Christin Scheer, Bergische Univ. Wuppertal (Germany)
Thomas J. Riedl, Bergische Univ. Wuppertal (Germany)


Published in SPIE Proceedings Vol. 10348:
Physical Chemistry of Semiconductor Materials and Interfaces XVI
Hugo A. Bronstein; Felix Deschler, Editor(s)

© SPIE. Terms of Use
Back to Top