Share Email Print
cover

Proceedings Paper

SCHOTT optical glass in space
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical systems in space environment have to withstand harsh radiation. Radiation in space usually comes from three main sources: the Van Allen radiation belts (mainly electrons and protons); solar proton events and solar energetic particles (heavier ions); and galactic cosmic rays (gamma- or x-rays). Other heavy environmental effects include short wavelength radiation (UV) and extreme temperatures (cold and hot). Radiation can damage optical glasses and effect their optical properties. The most common effect is solarization, the decrease in transmittance by radiation. This effect can be observed for UV radiation and for gamma or electron radiation. Optical glasses can be stabilized against many radiation effects. SCHOTT offers radiation resistant glasses that do not show solarization effects for gamma or electron radiation. A review of SCHOTT optical glasses in space missions shows, that not only radiation resistant glasses are used in the optical designs, but also standard optical glasses. This publication finishes with a selection of space missions using SCHOTT optical glass over the last decades.

Paper Details

Date Published: 5 September 2017
PDF: 11 pages
Proc. SPIE 10401, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems, 104010I (5 September 2017); doi: 10.1117/12.2272714
Show Author Affiliations
Ralf Jedamzik, SCHOTT AG (Germany)
Uwe Petzold, SCHOTT AG (Germany)


Published in SPIE Proceedings Vol. 10401:
Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems
Tony B. Hull; Dae Wook Kim; Pascal Hallibert, Editor(s)

© SPIE. Terms of Use
Back to Top