Share Email Print
cover

Proceedings Paper

Broadband perfect absorption of epsilon-near-zero thin films (Conference Presentation)
Author(s): Chang Kwon Hwangbo
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Epsilon-near-zero (ENZ) metamaterials have been studied in various research areas such as wavefront engineering, supercoupling effect, strong coupling, nonlinear optics, and perfect absorption. An ideal ENZ material of ε=0 is highly omnireflective at any angle of incidence. For a real ENZ material of Re(ε)≈0 the imaginary part Im(ε) is not zero from the causality principle. At an ENZ wavelength at Re(ε)≈0, the normal electric field (E_z ) in an ENZ thin film with a very small Im(ε) becomes very strong and the group velocity slows down; E_z is inversely proportional to the thickness of the film and the imaginary part of ε, resulting in a large light absorption in a low optical loss ENZ thin film. We investigate the tunable ENZ wavelength of indium tin oxide (ITO) thin films in the NIR wavelength regime which are controlled by the film growth conditions and demonstrate the broadband perfect absorption (PA) using the ITO multilayers of different ENZ wavelengths. Coherent perfect absorption (CPA) is an optical phenomenon occurring in an absorbing thin film by the interaction of two counter-propagating coherent waves. We propose a new broadband CPA scheme based on ENZ multilayer films and investigate the multi-wavelength optical switching, indicating that the on- and off-states can be controlled by the phase shift and wavelength of the two incident waves. In this lecture we provide design principles and fabrication guidelines for thin film ENZ devices for PA and CPA, which can find various applications in optical switches, modulators, filters, sensors, and energy harvesting devices.

Paper Details

Date Published: 3 October 2017
PDF
Proc. SPIE 10356, Nanostructured Thin Films X, 103560A (3 October 2017); doi: 10.1117/12.2272541
Show Author Affiliations
Chang Kwon Hwangbo, INHA Univ. (Korea, Republic of)


Published in SPIE Proceedings Vol. 10356:
Nanostructured Thin Films X
Yi-Jun Jen; Akhlesh Lakhtakia; Tom G. Mackay, Editor(s)

© SPIE. Terms of Use
Back to Top