Share Email Print
cover

Proceedings Paper

The fluid field flow and optical system performance analysis
Author(s): Ming-Ying Hsu; Shenq-Tsong Chang; Ting-Ming Huang
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Optical system performance is easily affected by variable surrounding conditions, including the precision optical system, as its performance is changed with flow field in the air or surrounding water. The air content of water vapor, carbon dioxide concentration, and dry air has a ratio that will affect the air refractive index. Water is another material of general optical systems, affected by surrounding conditions as well. Lithography and the microscope lens are commonly used for contact with water, with their refractive nature, changed by the pressure and density in the flow field. In addition, temperature and light wavelength are two important parameters of the air and water refractive index. This study calculates fluid field pressure and velocity distribution by Computational Fluid Dynamics (CFD) software, and then transfers it to air and water refractive index differences in the optical system. We also evaluate Optical Path Difference (OPD) with fluid field changes, which can improve optical design and system alignment progress by avoiding surrounding condition changes.

Paper Details

Date Published: 6 September 2017
PDF: 10 pages
Proc. SPIE 10374, Optical Modeling and Performance Predictions IX, 103740A (6 September 2017); doi: 10.1117/12.2272106
Show Author Affiliations
Ming-Ying Hsu, Instrument Technology Research Ctr. (Taiwan)
Shenq-Tsong Chang, Instrument Technology Research Ctr. (Taiwan)
Ting-Ming Huang, Instrument Technology Research Ctr. (Taiwan)


Published in SPIE Proceedings Vol. 10374:
Optical Modeling and Performance Predictions IX
Mark A. Kahan; Marie B. Levine-West, Editor(s)

© SPIE. Terms of Use
Back to Top