Share Email Print
cover

Proceedings Paper

Continual and molecular dynamics approaches in determining thermal properties of silicon
Author(s): A. V. Mazhukin; O. N. Koroleva; V. I. Mazhukin; A. V. Shapranov
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The article discusses the use of mathematical modeling to obtain properties of silicon. The nonequilibrium heating of semiconductor proceeds with a large separation of temperatures of the current carriers from the lattice, therefore, in the problems of laser action a silicon target can be regarded as an object consisting of two interacting subsystems, electron and phonon subsystems. At the same time, for each of subsystems it is necessary to determine thermophysical, optical and thermodynamic characteristics that vary over a wide temperature range. To determine the properties of the electronic subsystem a continual approach was used, and for the phonon subsystem a molecular-dynamic approach was used. Such properties of the electron Fermi gas as electron concentration Ne(T), holes concentration Nh(T), Fermi energy EF(T), band gap Eg(T,N), carrier mobility μ(T,N), electrical conductivity σ(T,N) are determined within the framework of quantum statistics in an arbitrary degeneracy range when the temperature varies from 300K to 2000K. The most important characteristics of the phonon subsystem such as the pressure dependences of the melting temperature of silicon Tm(P) and the heat of melting Lm(P), and the temperature dependence of the heat of evaporation Lv(T) were determined. The results are compared with the experimental data.

Paper Details

Date Published: 22 August 2017
PDF: 9 pages
Proc. SPIE 10453, Third International Conference on Applications of Optics and Photonics, 104530Y (22 August 2017); doi: 10.1117/12.2271999
Show Author Affiliations
A. V. Mazhukin, M.V. Keldysh Institute of Applied Mathematics (Russian Federation)
National Research Nuclear Univ. MEPhI (Russian Federation)
O. N. Koroleva, M.V. Keldysh Institute of Applied Mathematics (Russian Federation)
National Research Nuclear Univ. MEPhI (Russian Federation)
V. I. Mazhukin, M.V. Keldysh Institute of Applied Mathematics (Russian Federation)
National Research Nuclear Univ. MEPhI (Russian Federation)
A. V. Shapranov, M.V. Keldysh Institute of Applied Mathematics (Russian Federation)
National Research Nuclear Univ. MEPhI (Russian Federation)


Published in SPIE Proceedings Vol. 10453:
Third International Conference on Applications of Optics and Photonics
Manuel Filipe P. C. M. Martins Costa, Editor(s)

© SPIE. Terms of Use
Back to Top