Share Email Print

Proceedings Paper

Structured illumination 3D microscopy using adaptive lenses and multimode fibers
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Microscopic techniques with high spatial and temporal resolution are required for in vivo studying biological cells and tissues. Adaptive lenses exhibit strong potential for fast motion-free axial scanning. However, they also lead to a degradation of the achievable resolution because of aberrations. This hurdle can be overcome by digital optical technologies. We present a novel High-and-Low-frequency (HiLo) 3D-microscope using structured illumination and an adaptive lens. Uniform illumination is used to obtain optical sectioning for the high-frequency (Hi) components of the image, and nonuniform illumination is needed to obtain optical sectioning for the low-frequency (Lo) components of the image. Nonuniform illumination is provided by a multimode fiber. It ensures robustness against optical aberrations of the adaptive lens. The depth-of-field of our microscope can be adjusted a-posteriori by computational optics. It enables to create flexible scans, which compensate for irregular axial measurement positions. The adaptive HiLo 3D-microscope provides an axial scanning range of 1 mm with an axial resolution of about 4 microns and sub-micron lateral resolution over the full scanning range. In result, volumetric measurements with high temporal and spatial resolution are provided. Demonstration measurements of zebrafish embryos with reporter gene-driven fluorescence in the thyroid gland are presented.

Paper Details

Date Published: 26 June 2017
PDF: 6 pages
Proc. SPIE 10335, Digital Optical Technologies 2017, 1033519 (26 June 2017); doi: 10.1117/12.2270301
Show Author Affiliations
Jürgen Czarske, TU Dresden (Germany)
Katrin Philipp, TU Dresden (Germany)
Nektarios Koukourakis, TU Dresden (Germany)

Published in SPIE Proceedings Vol. 10335:
Digital Optical Technologies 2017
Bernard C. Kress; Peter Schelkens, Editor(s)

© SPIE. Terms of Use
Back to Top