Share Email Print
cover

Proceedings Paper

Real-time object-to-features vectorisation via Siamese neural networks
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Object-to-features vectorisation is a hard problem to solve for objects that can be hard to distinguish. Siamese and Triplet neural networks are one of the more recent tools used for such task. However, most networks used are very deep networks that prove to be hard to compute in the Internet of Things setting. In this paper, a computationally efficient neural network is proposed for real-time object-to-features vectorisation into a Euclidean metric space. We use L2 distance to reflect feature vector similarity during both training and testing. In this way, feature vectors we develop can be easily classified using K-Nearest Neighbours classifier. Such approach can be used to train networks to vectorise such “problematic” objects like images of human faces, keypoint image patches, like keypoints on Arctic maps and surrounding marine areas.

Paper Details

Date Published: 17 March 2017
PDF: 5 pages
Proc. SPIE 10341, Ninth International Conference on Machine Vision (ICMV 2016), 103411R (17 March 2017); doi: 10.1117/12.2268703
Show Author Affiliations
Fedor Fedorenko, Moscow Institute of Physics and Technology (Russian Federation)
Smart Engines Rus Ltd (Russian Federation)
Sergey Usilin, Federal Research Ctr. (Russian Federation)


Published in SPIE Proceedings Vol. 10341:
Ninth International Conference on Machine Vision (ICMV 2016)
Antanas Verikas; Petia Radeva; Dmitry P. Nikolaev; Wei Zhang; Jianhong Zhou, Editor(s)

© SPIE. Terms of Use
Back to Top