Share Email Print
cover

Proceedings Paper

Polishing tool and the resulting TIF for three variable machine parameters as input for the removal simulation
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The trend in the optic industry shows, that it is increasingly important to be able to manufacture complex lens geometries on a high level of precision. From a certain limit on the required shape accuracy of optical workpieces, the processing is changed from the two-dimensional to point-shaped processing. It is very important that the process is as stable as possible during the in point-shaped processing. To ensure stability, usually only one process parameter is varied during processing. It is common that this parameter is the feed rate, which corresponds to the dwell time.

In the research project ArenA-FOi (Application-oriented analysis of resource-saving and energy-efficient design of industrial facilities for the optical industry), a touching procedure is used in the point-attack, and in this case a close look is made as to whether a change of several process parameters is meaningful during a processing. The ADAPT tool in size R20 from Satisloh AG is used, which is also available for purchase. The behavior of the tool is tested under constant conditions in the MCP 250 CNC by OptoTech GmbH. A series of experiments should enable the TIF (tool influence function) to be determined using three variable parameters. Furthermore, the maximum error frequency that can be processed is calculated as an example for one parameter set and serves as an outlook for further investigations. The test results serve as the basic for the later removal simulation, which must be able to deal with a variable TIF. This topic has already been successfully implemented in another research project of the Institute for Precision Manufacturing and High-Frequency Technology (IPH) and thus this algorithm can be used.

The next step is the useful implementation of the collected knowledge. The TIF must be selected on the basis of the measured data. It is important to know the error frequencies to select the optimal TIF. Thus, it is possible to compare the simulated results with real measurement data and to carry out a revision. From this point onwards, it is possible to evaluate the potential of this approach, and in the ideal case it will be further researched and later found in the production.

Paper Details

Date Published: 15 June 2017
PDF: 10 pages
Proc. SPIE 10326, Fourth European Seminar on Precision Optics Manufacturing, 1032602 (15 June 2017); doi: 10.1117/12.2267415
Show Author Affiliations
Robert Schneider, Deggendorf Institute of Technology (Germany)
Alexander Haberl, Deggendorf Institute of Technology (Germany)
Rolf Rascher, Deggendorf Institute of Technology (Germany)


Published in SPIE Proceedings Vol. 10326:
Fourth European Seminar on Precision Optics Manufacturing
Oliver W. Fähnle; Rolf Rascher; Christine Wünsche, Editor(s)

© SPIE. Terms of Use
Back to Top