Share Email Print
cover

Proceedings Paper

Round-robin differential-phase-shift quantum key distribution in wavelength-multiplexed fiber channel
Author(s): Bingpeng Li
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Realizing long-distance quantum key distribution (QKD) in fiber channel where classical optical communications and quantum signals are multiplexed by their different wavelengths has attracted considerable attentions. The achievable secure distance of commonly-used Bennet-Brassard 1984 (BB84) protocol is lowered severely due to inevitable crosstalk from classical optical pulses. Unlike conventional quantum key distribution (QKD) protocols, round-robin differential-phase-shift (RRDPS) QKD protocol has a high tolerance for noise, since the potential information leakage in this protocol can be bounded without monitoring signal disturbance. Thus, it may be a promising protocol under noisy channel. In this work, we investigate the performance, e.g., achievable secure distance of RRPDS protocol, when crosstalk from classical communication is considered. Surprisingly, we find that RRPDS only has quite limited advantage over BB84 protocol when optical misalignment of QKD system is serious. If misalignment is trivial, BB84 can even outperform RRDPS protocol.

Paper Details

Date Published: 10 February 2017
PDF: 5 pages
Proc. SPIE 10250, International Conference on Optical and Photonics Engineering (icOPEN 2016), 102502F (10 February 2017); doi: 10.1117/12.2267279
Show Author Affiliations
Bingpeng Li, Naijing Political College Shanghai Branch (China)


Published in SPIE Proceedings Vol. 10250:
International Conference on Optical and Photonics Engineering (icOPEN 2016)
Anand Krishna Asundi; Xiyan Huang; Yi Xie, Editor(s)

© SPIE. Terms of Use
Back to Top