Share Email Print
cover

Proceedings Paper

A scale-invariant keypoint detector in log-polar space
Author(s): Tao Tao; Yun Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The scale-invariant feature transform (SIFT) algorithm is devised to detect keypoints via the difference of Gaussian (DoG) images. However, the DoG data lacks the high-frequency information, which can lead to a performance drop of the algorithm. To address this issue, this paper proposes a novel log-polar feature detector (LPFD) to detect scale-invariant blubs (keypoints) in log-polar space, which, in contrast, can retain all the image information. The algorithm consists of three components, viz. keypoint detection, descriptor extraction and descriptor matching. Besides, the algorithm is evaluated in detecting keypoints from the INRIA dataset by comparing with the SIFT algorithm and one of its fast versions, the speed up robust features (SURF) algorithm in terms of three performance measures, viz. correspondences, repeatability, correct matches and matching score.

Paper Details

Date Published: 8 February 2017
PDF: 6 pages
Proc. SPIE 10225, Eighth International Conference on Graphic and Image Processing (ICGIP 2016), 102250P (8 February 2017); doi: 10.1117/12.2267122
Show Author Affiliations
Tao Tao, Kunming Univ. of Science and Technology (China)
Yun Zhang, Kunming Univ. of Science and Technology (China)


Published in SPIE Proceedings Vol. 10225:
Eighth International Conference on Graphic and Image Processing (ICGIP 2016)
Yulin Wang; Tuan D. Pham; Vit Vozenilek; David Zhang; Yi Xie, Editor(s)

© SPIE. Terms of Use
Back to Top