Share Email Print
cover

Proceedings Paper

Regions of micro-calcifications clusters detection based on new features from imbalance data in mammograms
Author(s): Keju Wang; Min Dong; Zhen Yang; Yanan Guo; Yide Ma
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Breast cancer is the most common cancer among women. Micro-calcification cluster on X-ray mammogram is one of the most important abnormalities, and it is effective for early cancer detection. Surrounding Region Dependence Method (SRDM), a statistical texture analysis method is applied for detecting Regions of Interest (ROIs) containing microcalcifications. Inspired by the SRDM, we present a method that extract gray and other features which are effective to predict the positive and negative regions of micro-calcifications clusters in mammogram. By constructing a set of artificial images only containing micro-calcifications, we locate the suspicious pixels of calcifications of a SRDM matrix in original image map. Features are extracted based on these pixels for imbalance date and then the repeated random subsampling method and Random Forest (RF) classifier are used for classification. True Positive (TP) rate and False Positive (FP) can reflect how the result will be. The TP rate is 90% and FP rate is 88.8% when the threshold q is 10. We draw the Receiver Operating Characteristic (ROC) curve and the Area Under the ROC Curve (AUC) value reaches 0.9224. The experiment indicates that our method is effective. A novel regions of micro-calcifications clusters detection method is developed, which is based on new features for imbalance data in mammography, and it can be considered to help improving the accuracy of computer aided diagnosis breast cancer.

Paper Details

Date Published: 8 February 2017
PDF: 6 pages
Proc. SPIE 10225, Eighth International Conference on Graphic and Image Processing (ICGIP 2016), 102252C (8 February 2017); doi: 10.1117/12.2266909
Show Author Affiliations
Keju Wang, Lanzhou Univ. (China)
Min Dong, Lanzhou Univ. (China)
Zhen Yang, Lanzhou Univ. (China)
Yanan Guo, Lanzhou Univ. (China)
Yide Ma, Lanzhou Univ. (China)


Published in SPIE Proceedings Vol. 10225:
Eighth International Conference on Graphic and Image Processing (ICGIP 2016)
Yulin Wang; Tuan D. Pham; Vit Vozenilek; David Zhang; Yi Xie, Editor(s)

© SPIE. Terms of Use
Back to Top