Share Email Print
cover

Proceedings Paper

An adaptive software defined radio design based on a standard space telecommunication radio system API
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Software defined radio (SDR) has become a popular tool for the implementation and testing for communications performance. The advantage of the SDR approach includes: a re-configurable design, adaptive response to changing conditions, efficient development, and highly versatile implementation. In order to understand the benefits of SDR, the space telecommunication radio system (STRS) was proposed by NASA Glenn research center (GRC) along with the standard application program interface (API) structure. Each component of the system uses a well-defined API to communicate with other components. The benefit of standard API is to relax the platform limitation of each component for addition options. For example, the waveform generating process can support a field programmable gate array (FPGA), personal computer (PC), or an embedded system. As long as the API defines the requirements, the generated waveform selection will work with the complete system. In this paper, we demonstrate the design and development of adaptive SDR following the STRS and standard API protocol. We introduce step by step the SDR testbed system including the controlling graphic user interface (GUI), database, GNU radio hardware control, and universal software radio peripheral (USRP) tranceiving front end. In addition, a performance evaluation in shown on the effectiveness of the SDR approach for space telecommunication.

Paper Details

Date Published: 5 May 2017
PDF: 8 pages
Proc. SPIE 10196, Sensors and Systems for Space Applications X, 101960F (5 May 2017); doi: 10.1117/12.2266543
Show Author Affiliations
Wenhao Xiong, Intelligent Fusion Technology, Inc. (United States)
Xin Tian, Intelligent Fusion Technology, Inc. (United States)
Genshe Chen, Intelligent Fusion Technology, Inc. (United States)
Khanh Pham, Air Force Research Lab. (United States)
Erik Blasch, Air Force Research Lab. (United States)


Published in SPIE Proceedings Vol. 10196:
Sensors and Systems for Space Applications X
Khanh D. Pham; Genshe Chen, Editor(s)

© SPIE. Terms of Use
Back to Top