Share Email Print
cover

Proceedings Paper

Phase sensitive thermography for quality assessment of giant magnetostrictive composite materials
Author(s): Peng Yang; Chiu T. Law; Rani Elhajjar
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Giant magnetostrictive materials are increasingly proposed for smart material applications such as in sensors, actuators, and energy harvesting applications. In a composites form, the materials are combined in particle form with polymer matrix composites. Reviewing the literature on this topic, the reader observes a large amount of variability in the reported properties that are typically based on recording (overall or localized) strain and magnetic field with non-collocating strain gages and a gauss meter, i.e. far field measurements. Previously the linking of the microstructure in magnetostrictive composite to the spatial variability of the localized magnetostrictive response, a significant factor for the composite performance in sensing and acutuation, has not been received adequate attention. In this paper, a full-field phase-sensitive thermography method is proposed to use full-field infrared measurements to infer changes in the microstructure in magnetostrictive polymer composites under a cyclic magnetic field. The results show how defects in the material can be rapidly identified from the proposed approach in inspecting the manufactured smart composites.

Paper Details

Date Published: 19 April 2017
PDF: 7 pages
Proc. SPIE 10169, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017, 101692Y (19 April 2017); doi: 10.1117/12.2266022
Show Author Affiliations
Peng Yang, Univ. of Wisconsin-Milwaukee (United States)
Chiu T. Law, Univ. of Wisconsin-Milwaukee (United States)
Rani Elhajjar, Univ. of Wisconsin-Milwaukee (United States)


Published in SPIE Proceedings Vol. 10169:
Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017
H. Felix Wu; Andrew L. Gyekenyesi; Peter J. Shull; Tzu-Yang Yu, Editor(s)

© SPIE. Terms of Use
Back to Top