Share Email Print
cover

Proceedings Paper

Polarized millijoule fiber laser system with high beam quality and pulse shaping ability
Author(s): Rui Zhang; Xiaocheng Tian; Dangpeng Xu; Dandan Zhou; Zhaoyu Zong; Hongxun Li; Mengqiu Fan; Zhihua Huang; Na Zhu; Jingqin Su; Qihua Zhu; Feng Jing
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.

Paper Details

Date Published: 1 May 2017
PDF: 7 pages
Proc. SPIE 10192, Laser Technology for Defense and Security XIII, 1019207 (1 May 2017); doi: 10.1117/12.2264970
Show Author Affiliations
Rui Zhang, China Academy of Engineering Physics (China)
Xiaocheng Tian, China Academy of Engineering Physics (China)
Dangpeng Xu, China Academy of Engineering Physics (China)
Dandan Zhou, China Academy of Engineering Physics (China)
Zhaoyu Zong, China Academy of Engineering Physics (China)
Hongxun Li, China Academy of Engineering Physics (China)
Mengqiu Fan, China Academy of Engineering Physics (China)
Zhihua Huang, China Academy of Engineering Physics (China)
Na Zhu, China Academy of Engineering Physics (China)
Jingqin Su, China Academy of Engineering Physics (China)
Qihua Zhu, China Academy of Engineering Physics (China)
Feng Jing, China Academy of Engineering Physics (China)


Published in SPIE Proceedings Vol. 10192:
Laser Technology for Defense and Security XIII
Mark Dubinskii; Stephen G. Post, Editor(s)

© SPIE. Terms of Use
Back to Top