Share Email Print
cover

Proceedings Paper

Energy spread minimization in a cascaded laser wakefield accelerator via velocity bunching (Conference Presentation)
Author(s): Zhijun Zhang
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

We report the observation of energy-spread compensation of electron bunches in a laser wakefield accelerator in experiment. The compensation was caused by the gradient wakefield in plasma wake, and the energy spectra of the bunches evolved during the acceleration so that we propose a new method to diagnose the longitudinal length of the ultrashort electron bunch. By analyzing the energy spectra of electron bunches with different acceleration length, the wakefield gradient difference and the wakefield slope of the bunch could be estimated by combining with the slippage between the plasma wave and the electron bunch, thus the electron bunches′ longitudinal length could be estimated. By applying this new method, the longitudinal length of electron bunches with charge of about 40 pC generated from a laser wakefield accelerator was estimated to be (2.4 ± 2.2) μm in experiment, which was in good agreement with three-dimension particle-in-cell simulations.

Paper Details

Date Published: 9 June 2017
PDF: 1 pages
Proc. SPIE 10240, Laser Acceleration of Electrons, Protons, and Ions IV, 102400M (9 June 2017); doi: 10.1117/12.2264688
Show Author Affiliations
Zhijun Zhang, Shanghai Institute of Optics and Fine Mechanics (China)


Published in SPIE Proceedings Vol. 10240:
Laser Acceleration of Electrons, Protons, and Ions IV
Eric Esarey; Carl B. Schroeder; Florian J. Grüner, Editor(s)

© SPIE. Terms of Use
Back to Top