Share Email Print
cover

Proceedings Paper • new

Nondegenerate nonlinear refraction, absorption, and gain in semiconductors (Conference Presentation)
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We have shown both experimentally and theoretically that the effect of intermediate-state resonance enhancement causes highly nondegenerate 2-photon absorption, 2PA, to be strongly enhanced in direct-gap semiconductors. Calculations indicate an additional 10x increase in this enhancement is possible for quantum-well semiconductors. This enhancement leads to interesting applications of 2PA, such as mid-infrared detection, where uncooled, large-gap photodiodes can rival the sensitivity of cooled MCT detectors (for short pulses). Additionally, mid-IR imaging and tomography based on this effect have been shown. Even larger enhancement of 3PA is calculated and observed. In the case of optically-pumped semiconductors, we have now demonstrated that the complementary process of nondegenerate 2-photon stimulated emission can be observed. Theoretically, this results in 2-photon gain (2PG) that is enhanced as much as 2PA, leading to the possibility of large gap devices with tunable mid-infrared gain. However, the effect of nondegenerate enhancement of 3PA can be detrimental to the observation of this gain. Additionally, by causality, Kramers-Kronig relations predict that the enhancement of 2PA is accompanied by an enhancement of the nonlinear refractive index, n2, which is very highly dispersive in the region of 2PA. Our latest experimental results confirm this enhancement and strong dispersion.

Paper Details

Date Published: 7 June 2017
PDF: 1 pages
Proc. SPIE 10193, Ultrafast Bandgap Photonics II, 1019306 (7 June 2017); doi: 10.1117/12.2263280
Show Author Affiliations
David J. Hagan, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)
Matthew C. Reichert, Princeton Univ. (United States)
Peng Zhao, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)
Himansu S. Pattanaik, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)
Eric W. Van Stryland, CREOL, The College of Optics and Photonics, Univ. of Central Florida (United States)


Published in SPIE Proceedings Vol. 10193:
Ultrafast Bandgap Photonics II
Michael K. Rafailov, Editor(s)

© SPIE. Terms of Use
Back to Top