Share Email Print
cover

Proceedings Paper

X-ray coherent scattering tomography of textured material (Conference Presentation)
Author(s): Zheyuan Zhu; Shuo Pang

Paper Abstract

Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

Paper Details

Date Published: 7 June 2017
PDF: 1 pages
Proc. SPIE 10187, Anomaly Detection and Imaging with X-Rays (ADIX) II, 1018705 (7 June 2017); doi: 10.1117/12.2262029
Show Author Affiliations
Zheyuan Zhu, Univ. of Central Florida (United States)
Shuo Pang, Univ. of Central Florida (United States)


Published in SPIE Proceedings Vol. 10187:
Anomaly Detection and Imaging with X-Rays (ADIX) II
Amit Ashok; Edward D. Franco; Michael E. Gehm; Mark A. Neifeld, Editor(s)

© SPIE. Terms of Use
Back to Top