Share Email Print

Proceedings Paper

Direct-writing of copper-based micropatterns on polymer substrates using femtosecond laser reduction of copper (II) oxide nanoparticles
Author(s): Mizue Mizoshiri; Yasuaki Ito; Junpei Sakurai; Seiichi Hata
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Copper (Cu)-based micropatterns were fabricated on polymer substrates using femtosecond laser reduction of copper (II) oxide (CuO) nanoparticles. CuO nanoparticle solution, which consisted of CuO nanoparticles, ethylene glycol as a reductant agent, and polyvinylpyrrolidone as a dispersant, was spin-coated on poly(dimethylsiloxane) (PDMS) substrates and was irradiated by focused femtosecond laser pulses to fabricate Cu-based micropatterns. When the laser pulses were raster-scanned onto the solution, CuO nanoparticles were reduced and sintered. Cu-rich and copper (I)-oxide (Cu2O)-rich micropatterns were formed at laser scanning speeds of 15 mm/s and 0.5 mm/s, respectively, and at a pulse energy of 0.54 nJ. Cu-rich electrically conductive micropatterns were obtained without significant damages on the substrates. On the other hand, Cu2O-rich micropatterns exhibited no electrical conductivity, indicating that microcracks were generated on the micropatterns by thermal expansion and shrinking of the substrates. We demonstrated a direct-writing of Cu-rich micro-temperature sensors on PDMS substrates using the foregoing laser irradiation condition. The resistance of the fabricated sensors increased with increasing temperature, which is consistent with that of Cu. This direct-writing technique is useful for fabricating Cu-polymer composite microstructures.

Paper Details

Date Published: 17 April 2017
PDF: 6 pages
Proc. SPIE 10167, Nanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017, 101671G (17 April 2017); doi: 10.1117/12.2261398
Show Author Affiliations
Mizue Mizoshiri, Nagoya Univ. (Japan)
Yasuaki Ito, Nagoya Univ. (Japan)
Junpei Sakurai, Nagoya Univ. (Japan)
Seiichi Hata, Nagoya Univ. (Japan)

Published in SPIE Proceedings Vol. 10167:
Nanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top