Share Email Print
cover

Proceedings Paper

Carbon nanoparticle doped micro-patternable nano-composites for wearable sensing applications (Conference Presentation)
Author(s): Ajit Khosla
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

This talk focuses on preparation, characterization and micropatterning of electrically conducting KETJENBLACK carbon black nanoparticle (80 nm-diameter) doped Polydimethylsiloxane (PDMS) by employing extrusion mixing. Previously, we had reported fabrication of various micropatternable nanocomposites for wearable sensing applications vis solvent assisted ultrasonic mixing technique[1-16] . Extrusion mixing has an advantage as no organic solvents are used and homogenous dispersion of carbon nanoparticles is observed, which is confirmed by SEM analysis. The developed nanocomposite can be micropatterened using standard microfabrication techniques. It is also observed that percolation threshold occurs at 0.51 wt% of carbon nanoparticles in polymer matrix. Examples of developed nano-composites for wearable sensing applications for precision medicine will also be discussed. References: 1.http://summit.sfu.ca/item/12017 A. Khosla. Micropatternable multifunctional nanocomposite polymers for flexible soft MEMS applications. Diss. Applied Science: School of Engineering Science, 2011. 2. A. Khosla ; B. L. Gray; Fabrication of multiwalled carbon nanotube polydimethylsiloxne nanocomposite polymer flexible microelectrodes for microfluidics and MEMS. Proc. SPIE 7642, Electroactive Polymer Actuators and Devices (EAPAD) 2010, 76421V (April 09, 2010); doi:10.1117/12.847292. 3. Ang Li ; Ajit Khosla ; Connie Drewbrook ; Bonnie L. Gray; Fabrication and testing of thermally responsive hydrogel-based actuators using polymer heater elements for flexible microvalves. Proc. SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, 79290G (February 14, 2011); doi:10.1117/12.873197. 4. Khosla, A. and Gray, B. L. (2010), Preparation, Micro-Patterning and Electrical Characterization of Functionalized Carbon-Nanotube Polydimethylsiloxane Nanocomposite Polymer. Macromol. Symp., 297: 210–218. doi:10.1002/masy.200900165 5. A. Khosla ; D. Hilbich ; C. Drewbrook ; D. Chung ; B. L. Gray; Large scale micropatterning of multi-walled carbon nanotube/polydimethylsiloxane nanocomposite polymer on highly flexible 12×24 inch substrates. Proc. SPIE 7926, Micromachining and Microfabrication Process Technology XVI, 79260L (February 15, 2011); doi:10.1117/12.876738. 6. A. Khosla, and Bonnie L. Gray. "(Invited) Micropatternable Multifunctional Nanocomposite Polymers for Flexible Soft NEMS and MEMS Applications." ECS Transactions 45.3 (2012): 477-494. doi: 10.1149/1.3700913 7. Khosla, Ajit. "Nanoparticle-doped electrically-conducting polymers for flexible nano-micro Systems." Electrochemical Society Interface 21.3-4 (2012): 67-70. 8. Ajit Khosla; Smart garments in chronic disease management: progress and challenges. Proc. SPIE 8548, Nanosystems in Engineering and Medicine, 85482O (October 24, 2012); doi:10.1117/12.979667. 9. D. Chung ; A. Khosla ; B. L. Gray; Screen printable flexible conductive nanocomposite polymer with applications to wearable sensors. Proc. SPIE 9060, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2014, 90600U (April 16, 2014); doi:10.1117/12.2046548. 10. Daehan Chung ; Sam Seyfollahi ; Ajit Khosla ; Bonnie Gray ; Ash Parameswaran ; Ramani Ramaseshan ; Kirpal Kohli; Initial experiments with flexible conductive electrodes for potential applications in cancer tissue screening. Proc. SPIE 7929, Microfluidics, BioMEMS, and Medical Microsystems IX, 79290Z (February 14, 2011); doi:10.1117/12.875563. 11. A. Khosla ; B. L. Gray; New technologies for large-scale micropatterning of functional nanocomposite polymers. Proc. SPIE 8344, Nanosensors, Biosensors, and Info-Tech Sensors and Systems 2012, 83440W (April 26, 2012); doi:10.1117/12.915178. 12. A. Khosla, B.L. Gray, Preparation, characterization and micromolding of multi-walled carbon nanotube polydimethylsiloxane conducting nanocomposite polymer, Materials Letters, Volume 63, Issues 13–14, 31 May 2009, Pages 1203-1206, ISSN 0167-577X, http://dx.doi.org/10.1016/j.matlet.2009.02.043. 13. Giassa, M., Khosla, A., Gray, B. et al. J Electron Test (2010) 26: 139. doi:10.1007/s10836-009-5125-3 14.Ozhikandathil, Jayan, Ajit Khosla, and Muthukumaran Packirisamy. "Electrically Conducting PDMS Nanocomposite Using In Situ Reduction of Gold Nanostructures and Mechanical Stimulation of Carbon Nanotubes and Silver Nanoparticles." ECS Journal of Solid State Science and Technology 4.10 (2015): S3048-S3052. doi:10.1149/2.0091510jss 15. Kassegne, Sam, Maria Vomero, Roberto Gavuglio, Mieko Hirabayashi, Emre Özyilmaz, Sebastien Nguyen, Jesus Rodriguez, Eda Özyilmaz, Pieter van Niekerk, and Ajit Khosla. "Electrical impedance, electrochemistry, mechanical stiffness, and hardness tunability in glassy carbon MEMS μECoG electrodes." Microelectronic Engineering 133 (2015): 36-44. 16. A. Khosla ; B. L. Gray; Fabrication and properties of conductive micromoldable thermosetting polymer for electronic routing in highly flexible microfluidic systems. Proc. SPIE 7593, Microfluidics, BioMEMS, and Medical Microsystems VIII, 759314 (February 17, 2010); doi:10.1117/12.840911.

Paper Details

Date Published: 11 May 2017
PDF: 2 pages
Proc. SPIE 10167, Nanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017, 1016704 (11 May 2017); doi: 10.1117/12.2261253
Show Author Affiliations
Ajit Khosla, Yamagata Univ. (Japan)


Published in SPIE Proceedings Vol. 10167:
Nanosensors, Biosensors, Info-Tech Sensors and 3D Systems 2017
Vijay K. Varadan, Editor(s)

© SPIE. Terms of Use
Back to Top