Share Email Print
cover

Proceedings Paper

Finite element analysis of a 3D Fe-based SMA cellular beam with highly heterogeneous stress and strain distributions
Author(s): Cheikh Cissé; Wael Zaki; Tarak Ben Zineb
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Low-cost iron-based shape memory alloys (SMAs) have great potential for applications in large engineering parts. Their main drawback relates to their higher density compared to Nitinol and Cu-based SMAs, and can be compensated by using porous Fe-SMAs or by lightening the structures through the introduction of engineered cavities. In this manuscript, we simulate the thermomechanical response of a tapered Fe-Mn-Si beam with web openings using a 3D phenomenological model that was previously developed by the authors. The model is implemented in ABAQUS through a user defined material subroutine (UMAT). The results obtained by applying a pressure of 1 MPa and fixing both vertical ending faces show that, at room temperature, the smart beam can recover completely its initial shape. In contrast, a steel beam with the same geometry subjected to identical boundary conditions is found to fail at a much lower load. Even if the deformation of the SMA beam is dominated by plastic deformation as the loading temperature increases, its perfect shape memory effect at room temperature can be used to renovate architectural heritage or to design new smart structures.

Paper Details

Date Published: 11 April 2017
PDF: 8 pages
Proc. SPIE 10165, Behavior and Mechanics of Multifunctional Materials and Composites 2017, 101650E (11 April 2017); doi: 10.1117/12.2260468
Show Author Affiliations
Cheikh Cissé, Khalifa Univ. of Science, Technology and Research (United Arab Emirates)
Wael Zaki, Khalifa Univ. of Science, Technology and Research (United Arab Emirates)
Tarak Ben Zineb, Univ. de Lorraine (France)
LEMTA, CNRS (France)


Published in SPIE Proceedings Vol. 10165:
Behavior and Mechanics of Multifunctional Materials and Composites 2017
Nakhiah C. Goulbourne, Editor(s)

© SPIE. Terms of Use
Back to Top