Share Email Print
cover

Proceedings Paper

Design and fabrication of conductive polyaniline transducers via computer controlled direct ink writing
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

The intractable nature of the conjugated polymer (CP) polyaniline (PANI) has largely limited PANI-based transducers to monolithic geometries derived from thin-film deposition techniques. To address this limitation, we have previously reported additive manufacturing processes for the direct ink writing of three-dimensional electroactive PANI structures. This technology incorporates a modified delta robot having an integrated polymer paste extrusion system in conjunction with a counter-ion induced thermal doping process to achieve these 3D structures. In this study, we employ an improved embodiment of this methodology for the fabrication of functional PANI devices with increasingly complex geometries and enhanced electroactive functionality. Advances in manufacturing capabilities achieved through the integration of a precision pneumatic fluid dispenser and redesigned high-pressure end-effector enable extrusion of viscous polymer formulations, improving the realizable resolutions of features and deposition layers. The integration of a multi-material dual-extrusion end-effector has further aided the fabrication of these devices, enabling the concurrent assembly of passive and active structures, which reduces the limitations on device geometry. Subsequent characterization of these devices elucidates the relationships between polymer formulation, process parameters, and device design such that electromechanical properties can be tuned according to application requirements. This methodology ultimately leads to the improved manufacturing of electroactive polymer-enabled devices with high-resolution 3D features and enhanced electroactive performance.

Paper Details

Date Published: 17 April 2017
PDF: 8 pages
Proc. SPIE 10163, Electroactive Polymer Actuators and Devices (EAPAD) 2017, 101632O (17 April 2017); doi: 10.1117/12.2260362
Show Author Affiliations
F. Benjamin Holness, Western Univ. (Canada)
Aaron D. Price, Western Univ. (Canada)


Published in SPIE Proceedings Vol. 10163:
Electroactive Polymer Actuators and Devices (EAPAD) 2017
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top