Share Email Print
cover

Proceedings Paper

Entirely soft dielectric elastomer robots
Author(s): E.-F. Markus Henke; Katherine E. Wilson; Iain A. Anderson
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Multifunctional Dielectric Elastomer (DE) devices are well established as actuators, sensors and energy har- vesters. Since the invention of the Dielectric Elastomer Switch (DES), a piezoresistive electrode that can directly switch charge on and off, it has become possible to expand the wide functionality of DE structures even more. We show the application of fully soft DE subcomponents in biomimetic robotic structures. It is now possible to couple arrays of actuator/switch units together so that they switch charge between them- selves on and off. One can then build DE devices that operate as self-controlled oscillators. With an oscillator one can produce a periodic signal that controls a soft DE robot – a DE device with its own DE nervous system. DESs were fabricated using a special electrode mixture, and imprinting technology at an exact pre-strain. We have demonstrated six orders of magnitude change in conductivity within the DES over 50% strain. The control signal can either be a mechanical deformation from another DE or an electrical input to a connected dielectric elastomer actuator (DEA). We have demonstrated a variety of fully soft multifunctional subcomponents that enable the design of autonomous soft robots without conventional electronics. The combination of digital logic structures for basic signal processing, data storage in dielectric elastomer flip-flops and digital and analogue clocks with adjustable frequencies, made of dielectric elastomer oscillators (DEOs), enables fully soft, self-controlled and electronics-free robotic structures. DE robotic structures to date include stiff frames to maintain necessary pre-strains enabling sufficient actuation of DEAs. Here we present a design and production technology for a first robotic structure consisting only of soft silicones and carbon black.

Paper Details

Date Published: 10 May 2017
PDF: 11 pages
Proc. SPIE 10163, Electroactive Polymer Actuators and Devices (EAPAD) 2017, 101631N (10 May 2017); doi: 10.1117/12.2260361
Show Author Affiliations
E.-F. Markus Henke, Univ. of New Zealand (New Zealand)
TU Dresden (Germany)
Katherine E. Wilson, Univ. of New Zealand (New Zealand)
Iain A. Anderson, Univ. of New Zealand (New Zealand)
StretchSense Ltd (New Zealand)
Univ. of Auckland (New Zealand)


Published in SPIE Proceedings Vol. 10163:
Electroactive Polymer Actuators and Devices (EAPAD) 2017
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top