Share Email Print
cover

Proceedings Paper

High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging
Author(s): Tae Hee Kim; Robin James; Ram M. Narayanan
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

Paper Details

Date Published: 19 April 2017
PDF: 11 pages
Proc. SPIE 10169, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017, 1016903 (19 April 2017); doi: 10.1117/12.2259798
Show Author Affiliations
Tae Hee Kim, The Pennsylvania State Univ. (United States)
Robin James, The Pennsylvania State Univ. (United States)
Ram M. Narayanan, The Pennsylvania State Univ. (United States)


Published in SPIE Proceedings Vol. 10169:
Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017
H. Felix Wu; Andrew L. Gyekenyesi; Peter J. Shull; Tzu-Yang Yu, Editor(s)

© SPIE. Terms of Use
Back to Top