Share Email Print
cover

Proceedings Paper

Finite element model updating of multi-span steel-arch-steel-girder bridges based on ambient vibrations
Author(s): Tsung-Chin Hou; Wei-Yuan Gao; Chia-Sheng Chang; Guan-Rong Zhu; Yu-Min Su
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The three-span steel-arch-steel-girder Jiaxian Bridge was newly constructed in 2010 to replace the former one that has been destroyed by Typhoon Sinlaku (2008, Taiwan). It was designed and built to continue the domestic service requirement, as well as to improve the tourism business of the Kaohsiung city government, Taiwan. This study aimed at establishing the baseline model of Jiaxian Bridge for hazardous scenario simulation such as typhoons, floods and earthquakes. Necessities of these precaution works were attributed to the inherent vulnerability of the sites: near fault and river cross. The uncalibrated baseline bridge model was built with structural finite element in accordance with the blueprints. Ambient vibration measurements were performed repeatedly to acquire the elastic dynamic characteristics of the bridge structure. Two frequency domain system identification algorithms were employed to extract the measured operational modal parameters. Modal shapes, frequencies, and modal assurance criteria (MAC) were configured as the fitting targets so as to calibrate/update the structural parameters of the baseline model. It has been recognized that different types of structural parameters contribute distinguishably to the fitting targets, as this study has similarly explored. For steel-arch-steel-girder bridges in particular this case, joint rigidity of the steel components was found to be dominant while material properties and section geometries relatively minor. The updated model was capable of providing more rational elastic responses of the bridge superstructure under normal service conditions as well as hazardous scenarios, and can be used for manage the health conditions of the bridge structure.

Paper Details

Date Published: 19 April 2017
PDF: 12 pages
Proc. SPIE 10169, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017, 1016911 (19 April 2017); doi: 10.1117/12.2258724
Show Author Affiliations
Tsung-Chin Hou, National Cheng Kung Univ. (Taiwan)
Wei-Yuan Gao, National Cheng Kung Univ. (Taiwan)
Chia-Sheng Chang, National Cheng Kung Univ. (Taiwan)
Guan-Rong Zhu, National Cheng Kung Univ. (Taiwan)
Yu-Min Su, National Kaohsiung Univ. of Applied Sciences (Taiwan)


Published in SPIE Proceedings Vol. 10169:
Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure 2017
H. Felix Wu; Andrew L. Gyekenyesi; Peter J. Shull; Tzu-Yang Yu, Editor(s)

© SPIE. Terms of Use
Back to Top