Share Email Print
cover

Proceedings Paper

Design and motion control of bioinspired humanoid robot head from servo motors toward artificial muscles
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

The potential applications of humanoid robots in social environments, motivates researchers to design, and control biomimetic humanoid robots. Generally, people are more interested to interact with robots that have similar attributes and movements to humans. The head is one of most important part of any social robot. Currently, most humanoid heads use electrical motors, pneumatic actuators, and shape memory alloy (SMA) actuators for actuation. Electrical and pneumatic actuators take most of the space and would cause unsmooth motions. SMAs are expensive to use in humanoids. Recently, in many robotic projects, Twisted and Coiled Polymer (TCP) artificial muscles are used as linear actuators which take up little space compared to the motors. In this paper, we will demonstrate the designing process and motion control of a robotic head with TCP muscles. Servo motors and artificial muscles are used for actuating the head motion, which have been controlled by a cost efficient ARM Cortex-M7 based development board. A complete comparison between the two actuators is presented.

Paper Details

Date Published: 17 April 2017
PDF: 9 pages
Proc. SPIE 10163, Electroactive Polymer Actuators and Devices (EAPAD) 2017, 101631U (17 April 2017); doi: 10.1117/12.2258679
Show Author Affiliations
Yara Almubarak, The Univ. of Texas at Dallas (United States)
Yonas Tadesse, The Univ. of Texas at Dallas (United States)


Published in SPIE Proceedings Vol. 10163:
Electroactive Polymer Actuators and Devices (EAPAD) 2017
Yoseph Bar-Cohen, Editor(s)

© SPIE. Terms of Use
Back to Top