Share Email Print
cover

Proceedings Paper

Neuroelectronic device process development and challenge
Author(s): Gymama Slaughter; Matthew Robinson; Joel Tyson; Chen J. Zhang
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We investigated the fabrication of small neuroelectronic device consisting of four shanks with 16 electrodes per shank for simultaneous neurochemical and brain activity monitoring. The 16 electrodes on each shank have a separation distance of 100 microns (μm). Each shank has a width of 40 μm with separation distance of 7750 μm. This design eliminates single-site recording with limited individual conductors and permits rapid characterization of multiple neurons simultaneously at multiple brain depth/sites, consequently providing ground-breaking capabilities for parsing neurochemical release and brain activity. The device is fabricated on (100) silicon substrate and is fully integrated with electrode, interconnect and bond pad fabricated on one chip. Gold rectangular pyramid electrodes are selected as the recording electrodes to enhance the non-invasiveness associated with heating and minimizing surrounding biological tissue damage. The gold electrodes are deposited on the etched silicon substrate with 600 nanometer (nm) low temperature oxide (LTO) sacrificial layer. Each electrode has top area of 6 μm x 60 μm and depth of 750 μm. The interconnects provide electrical connection between electrodes and bond pads and are sandwiched between thin polyimide layers to prevent them from breaking while maintaining the flexibility. Final bond pads and electrodes are all passivated with polyimide to provide mechanical support. Upon device release, the recording electrodes are exposed to directly contact brain structure, and the exposed bond pads are soldered on the circuit board to transport signals to the measurement instrument. The entire process involves five photomasks. Process development and integration challenges will be reviewed and discussed in the paper.

Paper Details

Date Published: 24 March 2017
PDF: 8 pages
Proc. SPIE 10147, Optical Microlithography XXX, 101470W (24 March 2017); doi: 10.1117/12.2256297
Show Author Affiliations
Gymama Slaughter, Univ. of Maryland, Baltimore County (United States)
Matthew Robinson, National Institute of Standards and Technology (United States)
Joel Tyson, Univ. of Maryland, Baltimore County (United States)
Chen J. Zhang, National Institute of Standards and Technology (United States)


Published in SPIE Proceedings Vol. 10147:
Optical Microlithography XXX
Andreas Erdmann; Jongwook Kye, Editor(s)

© SPIE. Terms of Use
Back to Top