Share Email Print
cover

Proceedings Paper

Multilayered metal-insulator nanocavities: toward tunable multi-resonance nano-devices for integrated optics
Author(s): Junyeob Song; Wei Zhou
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Plasmonic nanocavities can control light flows and enhance light-mater interactions at subwavelength scale, and thus can potentially be used as nanoscale components in integrated optics systems either for passive optical coupling, or for active optical modulation and emission. In this work, we investigated a new type of multilayered metal-insulator optical nanocavities that can support multiple localized plasmon resonances with ultra-small mode volumes. The total number of resonance peaks and their resonance wavelengths can be freely and accurately controlled by simple geometric design rules. Multi-resonance plasmonic nanocavities can serve as a nanoscale wavelength-multiplexed optical components in integrated optics systems, such as optical couplers, light emitters, nanolasers, optical sensors, and optical modulators.

Paper Details

Date Published: 16 February 2017
PDF: 6 pages
Proc. SPIE 10106, Integrated Optics: Devices, Materials, and Technologies XXI, 1010613 (16 February 2017); doi: 10.1117/12.2255900
Show Author Affiliations
Junyeob Song, Virginia Polytechnic Institute and State Univ. (United States)
Wei Zhou, Virginia Polytechnic Institute and State Univ. (United States)


Published in SPIE Proceedings Vol. 10106:
Integrated Optics: Devices, Materials, and Technologies XXI
Sonia M. García-Blanco; Gualtiero Nunzi Conti, Editor(s)

© SPIE. Terms of Use
Back to Top