Share Email Print

Proceedings Paper

Statistical aspects of radiogenomics: can radiogenomics models be used to aid prediction of outcomes in cancer patients?
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Radiogenomics is a new direction in cancer research that aims at identifying the relationship between tumor genomics and its appearance in imaging (i.e. its radiophenotype). Recent years brought multiple radiogenomic discoveries in brain, breast, lung, and other cancers. With development of this new field we believe that it important to investigate in which setting radiogenomics could be useful to better direct research effort. One of the general applications of radiogenomics is to generate imaging-based models for prediction of outcomes and doing so through modeling the relationship between imaging and genomics and the relationship between genomics and outcomes. We believe that this is an important potential application of radiogenomic as it could advance imaging-based precision medicine. We show a preliminary simulation study evaluation whether such approach results in improved models. We investigate different setting in terms of the strengths of the radiogenomic relationship, prognostic power of the imaging and genomic descriptors, and availability and quality of data. Our experiments indicated that the following parameters have impact on usefulness of the radiogenomic approach: predictive power of genomic features and imaging features, strength of the radiogenomic relationship as well as number and follow up time for the genomic data. Overall, we found that there are some situations in which radiogenomics approach is beneficial but only when the radiogenomic relationship is strong and low number of imaging cases with outcomes data are available.

Paper Details

Date Published: 10 March 2017
PDF: 6 pages
Proc. SPIE 10136, Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment, 101361O (10 March 2017); doi: 10.1117/12.2255898
Show Author Affiliations
Boya Ren, Duke Univ. (United States)
Maciej A. Mazurowski, Duke Univ. (United States)

Published in SPIE Proceedings Vol. 10136:
Medical Imaging 2017: Image Perception, Observer Performance, and Technology Assessment
Matthew A. Kupinski; Robert M. Nishikawa, Editor(s)

© SPIE. Terms of Use
Back to Top