Share Email Print
cover

Proceedings Paper

Usability of a real-time tracked augmented reality display system in musculoskeletal injections
Author(s): Zachary Baum; Tamas Ungi; Andras Lasso; Gabor Fichtinger
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

PURPOSE: Image-guided needle interventions are seldom performed with augmented reality guidance in clinical practice due to many workspace and usability restrictions. We propose a real-time optically tracked image overlay system to make image-guided musculoskeletal injections more efficient and assess its usability in a bed-side clinical environment. METHODS: An image overlay system consisting of an optically tracked viewbox, tablet computer, and semitransparent mirror allows users to navigate scanned patient volumetric images in real-time using software built on the open-source 3D Slicer application platform. A series of experiments were conducted to evaluate the latency and screen refresh rate of the system using different image resolutions. To assess the usability of the system and software, five medical professionals were asked to navigate patient images while using the overlay and completed a questionnaire to assess the system. RESULTS: In assessing the latency of the system with scanned images of varying size, screen refresh rates were approximately 5 FPS. The study showed that participants found using the image overlay system easy, and found the table-mounted system was significantly more usable and effective than the handheld system. CONCLUSION: It was determined that the system performs comparably with scanned images of varying size when assessing the latency of the system. During our usability study, participants preferred the table-mounted system over the handheld. The participants also felt that the system itself was simple to use and understand. With these results, the image overlay system shows promise for use in a clinical environment.

Paper Details

Date Published: 3 March 2017
PDF: 8 pages
Proc. SPIE 10135, Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling, 101352T (3 March 2017); doi: 10.1117/12.2255897
Show Author Affiliations
Zachary Baum, Lab. for Percutaneous Surgery, Queens Univ. (Canada)
Tamas Ungi, Lab. for Percutaneous Surgery, Queens Univ. (Canada)
Andras Lasso, Lab. for Percutaneous Surgery, Queens Univ. (Canada)
Gabor Fichtinger, Lab. for Percutaneous Surgery, Queens Univ. (Canada)


Published in SPIE Proceedings Vol. 10135:
Medical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling
Robert J. Webster; Baowei Fei, Editor(s)

© SPIE. Terms of Use
Back to Top