Share Email Print
cover

Proceedings Paper

Cephalometric landmark detection in dental x-ray images using convolutional neural networks
Author(s): Hansang Lee; Minseok Park; Junmo Kim
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

In dental X-ray images, an accurate detection of cephalometric landmarks plays an important role in clinical diagnosis, treatment and surgical decisions for dental problems. In this work, we propose an end-to-end deep learning system for cephalometric landmark detection in dental X-ray images, using convolutional neural networks (CNN). For detecting 19 cephalometric landmarks in dental X-ray images, we develop a detection system using CNN-based coordinate-wise regression systems. By viewing x- and y-coordinates of all landmarks as 38 independent variables, multiple CNN-based regression systems are constructed to predict the coordinate variables from input X-ray images. First, each coordinate variable is normalized by the length of either height or width of an image. For each normalized coordinate variable, a CNN-based regression system is trained on training images and corresponding coordinate variable, which is a variable to be regressed. We train 38 regression systems with the same CNN structure on coordinate variables, respectively. Finally, we compute 38 coordinate variables with these trained systems from unseen images and extract 19 landmarks by pairing the regressed coordinates. In experiments, the public database from the Grand Challenges in Dental X-ray Image Analysis in ISBI 2015 was used and the proposed system showed promising performance by successfully locating the cephalometric landmarks within considerable margins from the ground truths.

Paper Details

Date Published: 3 March 2017
PDF: 6 pages
Proc. SPIE 10134, Medical Imaging 2017: Computer-Aided Diagnosis, 101341W (3 March 2017); doi: 10.1117/12.2255870
Show Author Affiliations
Hansang Lee, Korea Advanced Institute of Science and Technology (Korea, Republic of)
Minseok Park, Korea Advanced Institute of Science and Technology (Korea, Republic of)
Junmo Kim, Korea Advanced Institute of Science and Technology (Korea, Republic of)


Published in SPIE Proceedings Vol. 10134:
Medical Imaging 2017: Computer-Aided Diagnosis
Samuel G. Armato; Nicholas A. Petrick, Editor(s)

© SPIE. Terms of Use
Back to Top