Share Email Print
cover

Proceedings Paper

Fiber-optic fringe projection with crosstalk reduction by adaptive pattern masking
Author(s): Steffen Matthias; Markus Kästner; Eduard Reithmeier
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

To enable in-process inspection of industrial manufacturing processes, measuring devices need to fulfill time and space constraints, while also being robust to environmental conditions, such as high temperatures and electromagnetic fields. A new fringe projection profilometry system is being developed, which is capable of performing the inspection of filigree tool geometries, e.g. gearing elements with tip radii of 0.2 mm, inside forming machines of the sheet-bulk metal forming process. Compact gradient-index rod lenses with a diameter of 2 mm allow for a compact design of the sensor head, which is connected to a base unit via flexible high-resolution image fibers with a diameter of 1.7 mm. The base unit houses a flexible DMD based LED projector optimized for fiber coupling and a CMOS camera sensor. The system is capable of capturing up to 150 gray-scale patterns per second as well as high dynamic range images from multiple exposures. Owing to fiber crosstalk and light leakage in the image fiber, signal quality suffers especially when capturing 3-D data of technical surfaces with highly varying reflectance or surface angles. An algorithm is presented, which adaptively masks parts of the pattern to reduce these effects via multiple exposures. The masks for valid surface areas are automatically defined according to different parameters from an initial capture, such as intensity and surface gradient. In a second step, the masks are re-projected to projector coordinates using the mathematical model of the system. This approach is capable of reducing both inter-pixel crosstalk and inter-object reflections on concave objects while maintaining measurement durations of less than 5 s.

Paper Details

Date Published: 20 February 2017
PDF: 8 pages
Proc. SPIE 10117, Emerging Digital Micromirror Device Based Systems and Applications IX, 101170A (20 February 2017); doi: 10.1117/12.2254826
Show Author Affiliations
Steffen Matthias, Leibniz Univ. Hannover (Germany)
Markus Kästner, Leibniz Univ. Hannover (Germany)
Eduard Reithmeier, Leibniz Univ. Hannover (Germany)


Published in SPIE Proceedings Vol. 10117:
Emerging Digital Micromirror Device Based Systems and Applications IX
Michael R. Douglass; Benjamin L. Lee, Editor(s)

© SPIE. Terms of Use
Back to Top