Share Email Print
cover

Proceedings Paper

Convolutional neural network approach for enhanced capture of breast parenchymal complexity patterns associated with breast cancer risk
Author(s): Andrew Oustimov; Aimilia Gastounioti; Meng-Kang Hsieh; Lauren Pantalone; Emily F. Conant; Despina Kontos
Format Member Price Non-Member Price
PDF $14.40 $18.00

Paper Abstract

We assess the feasibility of a parenchymal texture feature fusion approach, utilizing a convolutional neural network (ConvNet) architecture, to benefit breast cancer risk assessment. Hypothesizing that by capturing sparse, subtle interactions between localized motifs present in two-dimensional texture feature maps derived from mammographic images, a multitude of texture feature descriptors can be optimally reduced to five meta-features capable of serving as a basis on which a linear classifier, such as logistic regression, can efficiently assess breast cancer risk. We combine this methodology with our previously validated lattice-based strategy for parenchymal texture analysis and we evaluate the feasibility of this approach in a case-control study with 424 digital mammograms. In a randomized split-sample setting, we optimize our framework in training/validation sets (N=300) and evaluate its descriminatory performance in an independent test set (N=124). The discriminatory capacity is assessed in terms of the the area under the curve (AUC) of the receiver operator characteristic (ROC). The resulting meta-features exhibited strong classification capability in the test dataset (AUC = 0.90), outperforming conventional, non-fused, texture analysis which previously resulted in an AUC=0.85 on the same case-control dataset. Our results suggest that informative interactions between localized motifs exist and can be extracted and summarized via a fairly simple ConvNet architecture.

Paper Details

Date Published: 3 March 2017
PDF: 6 pages
Proc. SPIE 10134, Medical Imaging 2017: Computer-Aided Diagnosis, 101340S (3 March 2017); doi: 10.1117/12.2254506
Show Author Affiliations
Andrew Oustimov, Perelman School of Medicine, Univ. of Pennsylvania (United States)
Aimilia Gastounioti, Perelman School of Medicine, Univ. of Pennsylvania (United States)
Meng-Kang Hsieh, Perelman School of Medicine, Univ. of Pennsylvania (United States)
Lauren Pantalone, Perelman School of Medicine, Univ. of Pennsylvania (United States)
Emily F. Conant, Perelman School of Medicine, Univ. of Pennsylvania (United States)
Despina Kontos, Perelman School of Medicine, Univ. of Pennsylvania (United States)


Published in SPIE Proceedings Vol. 10134:
Medical Imaging 2017: Computer-Aided Diagnosis
Samuel G. Armato; Nicholas A. Petrick, Editor(s)

© SPIE. Terms of Use
Back to Top