Share Email Print
cover

Proceedings Paper

A comparison of automated versus manual segmentation of breast UST transmission images to measure breast volume and sound speed
Author(s): Mark Sak; Neb Duric; Peter Littrup; Katelyn Westerberg
Format Member Price Non-Member Price
PDF $14.40 $18.00
cover GOOD NEWS! Your organization subscribes to the SPIE Digital Library. You may be able to download this paper for free. Check Access

Paper Abstract

Ultrasound tomography (UST) is an emerging breast imaging modality that can be used to quantitatively measure breast density. However, the sound speed images that are used in this analysis must first be segmented in order to accurately parse any quantitative information. Previously, this segmentation has been done manually, but this is time consuming, especially when dealing with a large number of images that must be masked. An automated masking algorithm has been developed that applies thresholding and morphological operators to UST attenuation images to automatically create masks that separate the breast tissue from the water bath. An initial set of images was tested using this algorithm to fine tune settings and very good agreement was achieved. However, when the optimized settings were applied to a larger dataset of 286 images, the robustness of the algorithm was tested. The manual masks measured a larger volume (921 cm3) than the automated masks (713 cm3), but fortunately, the difference in mean sound speed was much smaller (1449 m/s versus 1448 m/s). A majority of the automated masks (72.7%) had a measured Dice similarity coefficient (DSC) of greater than 0.8 which indicates that there was good to great overlap in the volumes of tissue created by the automated method. This algorithm shows promise to be used as a tool to quickly and effectively measure breast density.

Paper Details

Date Published: 13 March 2017
PDF: 8 pages
Proc. SPIE 10139, Medical Imaging 2017: Ultrasonic Imaging and Tomography, 101391H (13 March 2017); doi: 10.1117/12.2254482
Show Author Affiliations
Mark Sak, Delphinus Medical Technologies, Inc. (United States)
Neb Duric, Delphinus Medical Technologies, Inc. (United States)
Peter Littrup, Delphinus Medical Technologies, Inc. (United States)
Katelyn Westerberg, Delphinus Medical Technologies, Inc. (United States)


Published in SPIE Proceedings Vol. 10139:
Medical Imaging 2017: Ultrasonic Imaging and Tomography
Neb Duric; Brecht Heyde, Editor(s)

© SPIE. Terms of Use
Back to Top